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1. Introduction

Weak scale supersymmetry (SUSY) is one of the prime candidates for physics beyond the

standard model at the TeV scale [1] which will be probed soon at the LHC. One key question

on weak scale SUSY is the origin of the soft SUSY breaking terms of visible gauge and

matter superfields in low energy effective lagrangian [2]. Those soft terms are required to

preserve flavor and CP with high accuracy, which severely constrains the possible mediation

mechanism of SUSY breaking. There are certain schemes such as gauge mediation [3] and

anomaly mediation [4] in which the standard model gauge interactions play a dominant

role for the mediation, thereby automatically yield flavor and CP conserving soft terms.

On the other hand, it is commonly thought that gravity mediation [5] generically leads

to dangerous flavor and/or CP violation, and therefore needs an additional ingredient in

order to be consistent with low energy observations.

The messenger scale of gravity mediation is near the Planck scale MPl = 2.4×1018 GeV

which might be identified as the scale of quantum gravity. As string theory is the only

known candidate for a theory of quantum gravity, it is natural to ask if string theory can

provide a framework for flavor and CP conserving gravity mediation. In compactified string

theory, moduli (including the dilaton) which determine the 4-dimensional (4D) gauge and

Yukawa couplings are the most plausible candidate for a messenger of SUSY breaking, giv-

ing a gravity mediated contribution to gaugino and sfermion masses [6]. Then, constraints

from low energy flavor and/or CP violations imply that the dominant messenger modulus

should have flavor universal and CP conserving coupling to the minimal supersymmetric

standard model (MSSM) chiral matter fields. As the mechanism of moduli stabilization

determines which modulus is the dominant messenger, this in turn leads to a nontrivial

constraint on the possible moduli stabilization scheme.
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Moduli mediated SUSY breaking and its phenomenological consequences have been

studied before while regarding the moduli F components as a generic background without

specifying the underlying stabilization scheme [6]. It has been noticed that a particular

form of mediation dominated by the heterotic string dilaton gives universal and CP con-

serving soft terms at string tree level. If such dilaton domination can be realized while

keeping the quantum correction to the Kähler potential small enough, the resulting soft

terms would satisfy the constraints from flavor and CP violation with sparticle masses in

sub-TeV range [7].

Recent progress of flux compactification suggests that string flux might play key roles

to achieve a phenomenologically viable string vacuum state [8]. Flux can stabilize moduli

while producing a huge landscape of vacua which contains a de Sitter vacuum with nearly

vanishing cosmological constant. Flux compactification can also provide a SUSY breaking

scheme in which soft terms preserve flavor and CP at leading order in the string coupling

gst or the slope parameter α′ [9 – 11]. In this SUSY breaking scheme, only a particular

modulus which is unfixed by flux and whose vacuum expectation value controls the gst or

α′ expansion of 4D effective action can be an important messenger of SUSY breaking. The

couplings of such messenger modulus to chiral matter fields are naturally flavor universal

and CP conserving at leading order since the perturbative expansion is controlled by the

messenger modulus itself.

While providing a good starting point, this scheme does not assure yet the absence

of dangerous flavor or CP violation even when all other mediations in the model preserve

flavor and CP. There can be higher order correction to the messenger modulus-matter

couplings in the Kähler potential, which is expected to be flavor non-universal in general [7].

Then the modulus mediation itself associated with such higher order term might lead to

a flavor or CP violation exceeding the current experimental bound. In this paper, we

first discuss some features of flux compactification leading to a SUSY breaking scheme

which preserves flavor and CP at leading order in the perturbative expansion controlled

by the messenger modulus, and then examine the constraints on the scheme coming from

flavor and/or CP violation induced by higher order Kähler potential. It is found that all

phenomenological constraints can be satisfied even for generic form of higher order Kähler

potential and sparticle spectra in the sub-TeV range, under plausible assumptions on the

size of higher order correction and flavor mixing angles. This implies for instance that

mirage mediation [10, 12 – 14] involving such modulus mediation together with an anomaly

mediation of comparable size and also the modulus-dominated mediation [9, 15, 16] realized

in flux compactification can be free from the SUSY flavor and CP problems, while giving

gaugino and sfermion masses in the sub-TeV range. Same statement applies also to the

axionic or deflected mirage mediation [17] in which gauge mediation of comparable size is

added to mirage mediation.

The organization of this paper is as follows. In section 2, we discuss the relevant

features of flux compactification leading to the SUSY breaking scheme under consideration.

In section 3, we examine the structure of soft terms induced by higher order Kähler potential

together with the constraints from various flavor and/or CP violating observables. Section

4 is the conclusion.
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2. Relevant features of flux compactification

2.1 Moduli mass hierarchy

In this paper, we will be focusing on flux compactification which can realize the weak scale

SUSY together with the high unification scale1 MGUT ∼ 2 × 1016 GeV. In such compacti-

fication, both the string scale Mst and the compactification scale MKK are comparable to

the 4D Planck scale MPl ≈ 2.4 × 1018 GeV or MGUT. This results in a big mass hierarchy

between the heavy moduli U stabilized by flux and the light moduli T unfixed by flux.

In this subsection, we briefly discuss this moduli mass hierarchy, while ignoring the little

mass hierarchies of O(10 − 102) between MPl, Mst, and MKK, i.e. while regarding

Mst ∼MKK ∼MPl. (2.1)

If one introduces nonzero flux over a cycle C in compact internal space, the modulus

parameterizing the size of C is stabilized generically with a SUSY preserving mass mU

comparable to Mst [8]. In the language of 4D effective theory, one finds

mU ∼
〈

∂2Wflux

∂U2

〉

∼Mst, (2.2)

where Wflux is the flux-induced superpotential. (More precisely, mU is given by mU ∼
MPle

K/2∂2
UWflux/∂U∂ŪK ∼ gstMst/

√

M6
stV , where gst and V denote the string coupling

and the compactification volume, respectively.) Most string compactifications allow the NS

or RR 3-form fluxes over the 3-cycles of internal space, which would stabilize all complex

structure moduli. Depending upon the model, string dilaton or Kähler moduli might

be stabilized also by flux. For instance, in type IIB compactification, the dilaton can

be stabilized by RR 3-form flux [18]. It has been noticed that Kähler moduli in heterotic

compactification might be stabilized by intrinsic torsion flux [19], suggesting the possibility

that all complex structure and Kähler moduli in heterotic compactifications are stabilized

by nonzero NS and torsion fluxes.

In many flux compactifications, there remains a modulus T which can not be fixed by

flux. One example of such modulus is the volume modulus in type IIB flux compactification.

The dilaton in heterotic string compactification can be another example. Eventually, this

modulus should be stabilized by other means, e.g. nonperturbative dynamics [20]. It is ex-

pected that the resulting modulus mass mT is tied to the scale of SUSY breaking, and thus

mT ∼ m3/2 (2.3)

up to a little hierarchy of O(10 − 102).

In order to realize the weak scale SUSY, the gravitino mass m3/2 is required to be

smaller than MPl by many orders of magnitudes. For Mst ∼ MPl, this is nontrivial to be

achieved in flux compactification as generic flux configuration yields 〈Wflux〉 = O(1) (in the

unit with MPl = 1) due to the quantization of flux. On the other hand, if SUSY is broken

1In fact, our analysis of flavor and CP constraints in section 3 applies also to the intermediate string

scale scenario proposed in [15].
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by nonperturbative dynamics such as gaugino condensation [21], or warped dynamics [22],

the resulting SUSY breaking scale is hierarchically lower than MPl:

MSUSY ∼ e−AMPl, (2.4)

where e−A is an exponentially small nonperturbative or warp factor. In 4D effective theory,

the vacuum energy density at leading order is given by

Vvac = M4
SUSY − 3m2

3/2M
2
Pl, (2.5)

where m3/2/MPl ∼ 〈Wflux〉. As a result, in nonperturbative or warped SUSY breaking

scenario, only a particular class of flux vacua with an exponentially small vacuum value of

the flux-induced superpotential, i.e.

〈Wflux〉 ∼ e−2A, (2.6)

can have a (nearly) vanishing cosmological constant.

With the above observation, one can make the following assumptions to achieve a

phenomenologically viable vacuum state with weak scale SUSY: (i) the underlying com-

pactification involves a large number N ≫ 1 of cycles each of which can carry a quantized

flux in the range [−L,L] for L ≫ 1, which would allow a huge number of different flux

configurations of O(LN ), (ii) such flux configurations provide a fine discretum of 〈Wflux〉
varying from O(1) to a nearly vanishing value, (iii) SUSY is broken by nonperturbative or

warped dynamics, yielding an exponentially small MSUSY/MPl ∼ e−A ∼ 10−6 − 10−7. To

be able to tune the vacuum energy density to the observed value ∼ (3 × 10−12GeV)4, the

spacing between different values of 〈Wflux〉 should be as small as

δ〈Wflux〉 .

(

MPl

m3/2

)(

3 × 10−12GeV

MPl

)4

∼ 10−104. (2.7)

Such extremely fine spacing might be achieved in flux compactification with N ∼ L =

O(100) as in the case of flux energy density discussed in [23].

Under the assumptions specified above, the fine tuning for vanishing cosmological

constant selects a particular class of flux vacua with 〈Wflux〉 ∼ e−2A. For such vacua,

still the moduli mass mU ∼ 〈∂2Wflux/∂U
2〉 is generically of order unity due to the flux

quantization. This results in a big moduli mass hierarchy:

mT

mU
∼ 〈Wflux〉

〈∂2Wflux/∂U2〉 ∼
m3/2

MPl
∼ e−2A, (2.8)

where again the little hierarchy factors of O(10−102) are ignored. It should be stressed that

this moduli mass hierarchy is an outcome of the fine tuning of the cosmological constant

and the assumed hierarchy (2.4) between the SUSY breaking scale and the Planck scale.

Generically, both the heavy moduli U and the light modulus T couple to SUSY break-

ing sector, therefore developing nonzero F -components. However, regardless of the details

of SUSY breaking, the F -component of the flux stabilized U is given by

FU ∼
m2

3/2

mU
, (2.9)
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which is negligibly small for mU comparable to the string or GUT scale. (Note that moduli

are normalized to be dimensionless, so their F components have a mass dimension one.)

On the other hand, the light modulus T can develop a sizable F T , e.g.

F T ∼ m3/2 or
m3/2

ln(MPl/m3/2)
, (2.10)

and therefore can be an important messenger of SUSY breaking [10, 15, 16].

2.2 4D effective action expanded in the inverse powers of the messenger mod-

ulus

Quite often, the messenger modulus T which is unfixed by flux has the following features:

(a) 1/Re(T ) is proportional to certain powers of the string coupling gst or the inverse of

the compactification radius (in the unit with α′ = 1), thus its vacuum expectation value

controls the gst or α′ expansion of the 4D action, (b) Im(T ) is an axion whose non-linear

PQ symmetry

U(1)T : Im(T ) → Im(T ) + constant (2.11)

is respected at any finite order in the gst and α′ expansion. As a concrete example of such

messenger modulus, one might consider the volume modulus and its RR axion partner in

type IIB flux compactification or the dilaton-axion in heterotic flux compactification.

For such messenger modulus T , the couplings of moduli to the visible gauge and matter

fields are given by

∫

d4θ YIJ̄(T + T ∗, U, U∗)QIQJ∗

+

(
∫

d2θ

[

1

4
fa(T,U)W aαW a

α +
1

6
λIJK(U)QIQJQK

]

+ h.c.

)

, (2.12)

where W aα and QI denote the visible gauge and matter superfields, respectively. Here the

matter kinetic function YIJ̄ is given by

YIJ̄ = e−K0/3ZIJ̄ (2.13)

for the Kähler potential

K = K0 + ZIJ̄Q
IQJ∗, (2.14)

whereK0 is the moduli Kähler potential and ZIJ̄ are the matter Kähler metrics. Expanding

the 4D action in powers of gst or α′ while preserving the non-linear PQ symmetry U(1)T ,

the matter and gauge kinetic functions can be written as

YIJ̄ = (T + T ∗)nIJ̄ ΓIJ̄(U,U
∗)

(

1 − ∆IJ̄(U,U
∗)

[8π2(T + T ∗)]kIJ̄
+ · · ·

)

,

fa = kaT +
1

8π2
∆a(U),

– 5 –
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where nIJ̄ , kIJ̄ , and ka are all rational numbers. The successful unification of the MSSM

gauge couplings at MGUT ∼ 2 × 1016 GeV suggests that ka are universal for the MSSM

gauge group. In the following, we take the normalization of T for which ka = 1, and thus

〈Re(T )〉 ≃ 〈Re(fa)〉 ≃
1

g2
GUT

. (2.15)

As was noticed before [10, 24, 25], if the MSSM chiral matter fields with same gauge

charge originate from branes with same world volume dimension, the matter modular

weights nIJ̄ are automatically flavor universal (see appendix A for a more discussion of

matter modular weights):

nIJ̄ = flavor universal nI . (2.16)

Also, in view of that T determines the 4D gauge coupling, it is expected that the messenger

modulus expansion of 4D action is controlled by

1

8π2(T + T ∗)
∼ αGUT

4π
, (2.17)

and thus

kIJ̄ = 1, ∆IJ̄ = O(1), ∆a = O(1). (2.18)

In the following, we will assume this feature of the messenger modulus expansion, and

examine its phenomenological consequences. Note that the non-linear PQ symmetry U(1)T
and the holomorphicity assure that λIJK are independent of T .

At leading order in the messenger modulus expansion, the non-linear PQ symmetry

U(1)T and the flavor universality of matter modular weights nI assure that

∂

∂T
ln(YIJ̄) =

nI
T + T ∗

= real and flavor universal,

∂

∂T
ln(λIJK) = 0,

∂

∂T
ln(Re(fa)) =

kag
2
a

2
= real, (2.19)

with which the T -mediated SUSY breaking preserves flavor and CP [10, 15, 26]. On the

other hand, ∂
∂U ln(YIJ̄) and ∂

∂U ln(λIJK) are flavor non-universal and complex, so the U -

mediated SUSY breaking violates flavor and CP in general. However, as we will see shortly,

FU ∼
m2

3/2

mU
∼
m2

3/2

MPl
(2.20)

regardless of the details of SUSY breaking, and thus the moduli mass hierarchy (2.8)

assures that the U -mediated SUSY breaking is absolutely negligible. Still there might be a

dangerous CP violation associated with the phase of Higgs µ and B parameters. Even for

this, the non-linear PQ symmetry U(1)T is useful as it allows the relative phase between

F T and m3/2 to be rotated away. With real F T /m3/2, if µ is generated dominantly by

– 6 –
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the Chun-Kim-Nilles mechanism [27], or by the Giudice-Masiero mechanism [28], or by

a singlet vacuum value as in the next to minimal supersymmetric standard model, the

resulting Higgs mass parameters preserve CP [13].

One can now integrate out the heavy moduli U to derive the effective action of the

visible fields and the light messenger modulus T . Let us start with the full 4D action which

is generically given by

∫

d4θ CC∗ Ω(U,U∗,Φ,Φ∗) +

[
∫

d2θC3
(

Wflux(U) + W̃ (U,Φ)
)

+ h.c.

]

, (2.21)

where C is the chiral compensator superfield and Φ stands for all light superfields in-

cluding the visible gauge and matter fields as well as the light modulus T . Here Wflux is

the flux-induced superpotential depending only on U , and W̃ denotes the other part of

superpotential which might include a U(1)T breaking non-perturbative term, e.g.

W̃ = A(U)e−aT +
1

6
λIJK(U)QIQJQK . (2.22)

To integrate out U , we note that flux quantization implies

MU ≡ ∂2Wflux(U = U0)

∂U2
∼ Mst, (2.23)

and the fine tuning of the cosmological constant in the presence of non-perturbative or

warped SUSY breaking requires

Wflux(U = U0) ∼ e−2A, (2.24)

where e−A = MSUSY/MPl is an exponentially small non-perturbative or warp factor and

U0 is the globally supersymmetric stationary point of the flux-induced superpotential:

∂Wflux(U = U0)

∂U
= 0. (2.25)

Apparently the physical moduli mass mU is dominated by the globally supersymmetric

mass MU in the limit when MU ≫ m3/2, and U0 and MU are independent of light super-

fields.

The heavy moduli U can be integrated out by replacing U in the action (2.21) with

the solution of the following superfield equation of motion:

1

4
D̄2

(

CC∗ ∂Ω

∂U

)

+C3∂W

∂U
= 0, (2.26)

where D̄2 = D̄α̇D̄α̇ denotes the supercovariant derivative, W = Wflux + W̃ and all light

fields Φ and also the compensator C are considered to be generic background superfields.

In the limit with m3/2/MU ∼ e−2A ≪ 1, the solution can be expanded in powers of D̄2/MU

and W̃/MU both of which are of the order of m3/2/MU . Note that ∂nW̃/∂Un ∼ m3/2 for

arbitrary n ≥ 0 if the mass scale of the visible sector, e.g. the weak scale, is determined

– 7 –
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by SUSY breaking. In the perturbative expansion in powers of D̄2/MU and W̃/MU , the

solution is given by

U = U0 −
1

MU

[

1

4
D̄2

(

C∗

C2

∂Ω(U0, U
∗
0 ,Φ,Φ

∗)

∂U

)

+
∂W̃ (U0,Φ)

∂U

]

+ · · · , (2.27)

where MU is given in (2.23), and the ellipsis denotes higher order terms. One immediate

consequence of this superfield solution is

FU ∼
m3/2

MU
FΦ ∼

m2
3/2

MU
, (2.28)

which assures that FU is negligibly small compared to FΦ ∼ m3/2 when MU ∼Mst.

It is now obvious that, upon ignoring the small corrections suppressed by m3/2/MU ,

the low energy effective lagrangian can be obtained by replacing U in (2.21) with U0. After

this, one can make a proper redefinition of QI under which

ΓIJ̄(U0, U
∗
0 ) → δIJ̄ , ∆IJ̄(U0, U

∗
0 ) → ∆IδIJ̄ . (2.29)

After such field redefinition, the effective couplings of the messenger modulus T to the

visible gauge and matter fields are given by

∫

d4θ YIQ
IQI∗+

(
∫

d2θ

[

1

4
faW

aW a+
1

6
λIJKQ

IQJQK
]

+h.c.

)

+O
(

m3/2

MU

)

, (2.30)

where

YI = (T + T ∗)nI

(

1 − ∆I

8π2(T + T ∗)

)

,

fa = kaT +
1

8π2
∆a, (2.31)

where ∆I and ∆a are constants of order unity, and λIJK are constants with which the

canonically normalized Yukawa couplings are determined as

yIJK =
λIJK√
YIYJYK

≃ λIJK
(T + T ∗)(nI+nJ+nK)/2

. (2.32)

The soft SUSY-breaking terms of canonically normalized sfermion fields Q̃I can be

written as

Lsoft = −1

2
m2
I |Q̃I |2 −

1

6
AIJKyIJKQ̃

IQ̃JQ̃K + h.c., (2.33)

which include the modulus mediated contribution [6] at MGUT as

m2
I = −F TF T̄∂T∂T̄ ln (YI) + · · ·

=

(

nI +
g2
GUT

8π2
∆I

)

M2
0 + · · · ,

– 8 –
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AIJK = −F T∂T ln

(

λIJK
YIYJYK

)

+ · · ·

=

[

(nI + nJ + nK) +
g2
GUT

16π2
(∆I + ∆J + ∆K)

]

M0 + · · · , (2.34)

where

M0 =
F T

T + T ∗
(2.35)

corresponds to the modulus mediated contribution to the gaugino mass at MGUT, and the

ellipses stand for the contribution from other mediation in the model.

The matter modular weights nI are typically flavor universal, however there is no a

priori reason for the higher order coefficients ∆I to be flavor universal also. Even when

∆I are flavor non-universal, there would not be any dangerous flavor or CP violation

if sfermion masses are much heavier than 1 TeV, which actually happens for instance in

the scheme proposed in [29]. In this paper, we are concerned with the possibility that

modulus mediation including higher order effects satisfies the flavor and CP constraints

with sparticle spectra in the sub-TeV range. To see this, we will examine in the next section

the constraints on ∆I imposed by low energy flavor and/or CP violating observables under

the assumption that they are the dominant origin of non-minimal flavor or CP violation.

3. Constraints from flavor and/or CP violation

Let us first set up the notation. We start with the field basis for which the matter kinetic

functions are diagonal as in the effective action (2.30). The MSSM matters and their N = 1

superspace kinetic functions are denoted as

QI = {qi, uci , dci , li, eci},
YI = {Y q

i , Y
u
i , Y

d
i , Y

l
i , Y

e
i }, (3.1)

where qi (i = 1, 2, 3) are the SU(2)W doublet quarks, uci and dci are the SU(2)W singlet

anti-quarks, li are the SU(2)W doublet leptons, eci are the SU(2)W singlet leptons, and the

matter kinetic functions include higher order correction as

Y φ
i = (T + T ∗)nφ

(

1 − ∆φ
i

8π2(T + T ∗)

)

(φ = q, u, d, l, e). (3.2)

Here we are interested in the flavor or CP violations associated with ∆φ
i −∆φ

j 6= 0 for i 6= j

as the higher order correction to the gauge kinetic function, i.e. ∆a of (2.31), obviously

preserves flavor, and also does not give any CP violation.

Yukawa couplings and soft SUSY breaking terms of the canonically normalized MSSM

matters at the weak scale are parameterized as

LYukawa = yuijHuqiu
c
j + ydijHdqid

c
j + yeijHdlie

c
j + κνijHuliHulj + h.c.,

Lsoft = −
(

Auijy
u
ijHuq̃iũ

c
j +Adijy

d
ij q̃iHdd̃

c
j +Aeijy

e
ijHdl̃iẽ

c
j + h.c.

)

−
(

m
2(q̃)
ij q̃∗i q̃j +m

2(ũ)
ij ũci ũ

c∗
j +m

2(d̃)
ij d̃ci d̃

c∗
j +m

2(l̃)
ij l̃∗i l̃j +m

2(ẽ)
ij ẽci ẽ

c∗
j

)

, (3.3)

– 9 –
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where we include the D = 5 operator for neutrino masses in LYukawa. Soft parameters can

be decomposed as

m
2(φ̃)
ij = m

2(φ̃)
0 δij + ∆m

2(φ̃)
ij (φ̃ = q̃, ũ, d̃, l̃, ẽ),

Aψij = Aψ0 + ∆Aψij (ψ = u, d, e), (3.4)

where m
2(φ̃)
0 and Aψ0 stand for flavor universal sfermion masses and A-parameters, respec-

tively, while ∆m
2(φ̃)
ij and ∆Aψij represent flavor non-universal part. Depending upon the

underlying SUSY breaking scheme, m
2(φ̃)
0 and Aψ0 might receive contributions from various

sources, e.g. modulus mediation, gauge mediation, anomaly mediation, renormalization

group effect, e.t.c., whose relative importance will depend on the details of the model.

Here we do not specify the full origin of the flavor universal m
2(φ̃)
0 and Aψ0 , however the fla-

vor non-universal part is assumed to be dominated by the modulus mediated contribution

associated with non-universal ∆φ
i :

∆m
2(φ̃)
ij ≃ −

[

F TF T̄∂T∂T̄ ln

(

1 − ∆φ
i

8π2(T + T ∗)

)]

δij

≃ g2
GUT

8π2
∆φ
iM

2
0 δij (φ = q, u, d, l, e),

∆Auij ≃ F T∂T ln

(

1 − ∆q
i

8π2(T + T ∗)

)(

1 −
∆u
j

8π2(T + T ∗)

)

≃ g2
GUT

16π2
(∆q

i + ∆u
j )M0,

∆Adij ≃ F T∂T ln

(

1 − ∆q
i

8π2(T + T ∗)

)

(

1 −
∆d
j

8π2(T + T ∗)

)

≃ g2
GUT

16π2
(∆q

i + ∆d
j )M0,

∆Aeij ≃ F T∂T ln

(

1 − ∆l
i

8π2(T + T ∗)

)(

1 −
∆e
j

8π2(T + T ∗)

)

≃ g2
GUT

16π2
(∆l

i + ∆e
j)M0, (3.5)

where

M0 =
F T

T + T ∗
(3.6)

corresponds to the modulus mediated contribution to the gaugino mass at MGUT. In fact,

there are renormalization group (RG) corrections to the above non-universal part of soft

parameters at the weak scale, which are mostly due to the 3rd generation Yukawa couplings.

However such RG corrections can be safely ignored here as all the meaningful flavor and

CP constraints on the modulus mediated SUSY breaking under consideration come from

the first two generations for which the Yukawa induced RG corrections are negligibly small.

To examine the flavor and/or CP violating observables induced by ∆m
2(φ̃)
ij and ∆Aψij ,

it is convenient to use the super-CKM basis in which the quark and lepton mass matrices
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are diagonal [30]. Starting from the Yukawa coupling matrices yψij (ψ = u, d, e) defined in

the field basis for which the matter kinetic functions are diagonal, the super-CKM basis

can be achieved by the unitary rotations of the matter superfields under which the Yukawa

matrices become real and diagonal:

(V ψ
L )T yψV ψ

R = Diag(ŷψ1 , ŷ
ψ
2 , ŷ

ψ
3 ),

(V ν
L )TκνV ν

L = Diag(κ̂ν1 , κ̂
ν
2 , κ̂

ν
3), (3.7)

where V ψ
L,R and V ν

L are unitary matrices.

In supersymmetric limit, flavor and/or CP violations are all described by the CKM

and PMNS mixing matrices given by

VCKM = V u†
L V d

L , VPMNS = V e†
L V ν

L . (3.8)

However, in the presence of soft SUSY breaking terms, there can be further flavor and/or

CP violations induced by non-universal ∆m
2(φ̃)
ij and ∆Aψij. Most of those non-minimal

flavor violations can be described by the following mass-insertion parameters with i 6=
j [31, 32]:

(δdLL)ij =
(V d†
L ∆m2(q̃)V d

L )ij

m2
q̃

≃ g2
GUT

8π2

M2
0

m2
q̃

(∆d
LL)ij ,

(δdRR)ij =
(V dT
R ∆m2(d̃)V d∗

R )ij
m2
q̃

≃ g2
GUT

8π2

M2
0

m2
q̃

(∆d
RR)ij ,

(δdLR)ij =
(V dT
L ∆AdV d

R)ij〈Hd〉
m2
q̃

≃ g2
GUT

16π2

M2
0

m2
q̃

(

(∆d
LL)ij

md
j

M0
+
md
i

M0
(∆d

RR)ij

)

,

(δeLL)ij =
(V e†
L ∆m2(l̃)V e

L)ij

m2
l̃

≃ g2
GUT

8π2

M2
0

m2
l̃

(∆e
LL)ij ,

(δeRR)ij =
(V eT
R ∆m2(ẽ)V e∗

R )ij
m2
l̃

≃ g2
GUT

8π2

M2
0

m2
l̃

(∆e
RR)ij ,

(δeLR)ij =
(V eT
L ∆AeV e

R)ij〈Hd〉
m2
l̃

≃ g2
GUT

16π2

M2
0

m2
l̃

(

(∆e
LL)ij

me
j

M0
+
me
i

M0
(∆e

RR)ij

)

, (3.9)

where mq̃ and ml̃ denote the average squark and slepton masses, md
i and me

i (i = 1, 2, 3)

are the down-type quark and charged lepton mass eigenvalues, and

(∆d,e
LL)ij =

∑

k

(V d,e
L )∗ki(V

d,e
L )kj∆

q,l
k ,

(∆d,e
RR)ij =

∑

k

(V d,e
R )ki(V

d,e
R )∗kj∆

d,e
k ,

∆Ad,e
ij = yd,eij ∆Ad,eij . (3.10)

According to our assumption that the messenger modulus expansion is controlled by

1/8π2Re(T ), all of the above mass-insertion parameters are suppressed by a factor of
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O(g2
GUT/8π

2). In fact, the flavor changing mass-insertion parameters with i 6= j can be

further suppressed by small mixing angle in the unitary matrices V ψ
L,R (ψ = u, d, e). To

see this, we note that the observed quark and charged lepton masses and the CKM mixing

angles suggest that the Yukawa couplings take the form

yuij ∼ ǫqi ǫ
u
i , ydij ∼ ǫqi ǫ

d
j , yeij ∼ ǫliǫ

e
j. (3.11)

This form of Yukawa couplings can be naturally obtained by assuming either the localiza-

tion of matter fields in extra dimension [33 – 35] or a spontaneously broken flavor symme-

try [36]. In the scheme utilizing localization, different flavors with the same gauge charge

are assumed to be localized at different positions in extra dimension, and then the flavor

parameters ǫφi (φ = q, u, d, l, e) determined by the wavefunction of matter fields show hier-

archical pattern. Similar result can be obtained also in the scheme which assumes a broken

flavor symmetry under which different flavors have different charges. In both schemes, the

above form of Yukawa couplings is maintained even after the kinetic terms of matter fields

are diagonalized. Note that neither localization nor flavor symmetry does provide a further

suppression of ∆φ
i in the matter kinetic functions.

The Yukawa couplings of (3.11) give rise to the mass hierarchy:

mu
i /m

u
j ∼ |ǫqi ǫui |/|ǫ

q
jǫ
u
j |, md

i /m
d
j ∼ |ǫqi ǫdi |/|ǫ

q
jǫ
d
j |, me

i/m
e
j ∼ |ǫliǫei |/|ǫljǫej |, (3.12)

and also the mixing angle pattern for i ≤ j:

(

V u,d
L

)

ij
∼
(

V u,d
L

)

ji
∼ ǫqi /ǫ

q
j ,

(

V e
L

)

ij
∼
(

V e
L

)

ji
∼ ǫli/ǫ

l
j ,

(

V ψ
R

)

ij
∼
(

V ψ
R

)

ji
∼ ǫψi /ǫ

ψ
j , (ψ = u, d, e), (3.13)

where we have assumed the normal hierarchy structure:

|ǫφ1 | . |ǫφ2 | . |ǫφ3 |. (3.14)

This pattern of mixing angles implies for instance
∣

∣

∣

(

V d
L

)

12

(

V d
R

)

12

∣

∣

∣
∼ md/ms,

∣

∣

(

V e
L

)

12

(

V e
R

)

12

∣

∣ ∼ me/mµ. (3.15)

Using the mass hierarchy (3.12) and the mixing angle pattern (3.13) together with

∑

k

V ∗
kiVkj∆k = δij∆1 + V ∗

2iV2j(∆2 − ∆1) + V ∗
3iV3j(∆3 − ∆1)

= δij∆2 + V ∗
1iV1j(∆1 − ∆2) + V ∗

3iV3j(∆3 − ∆2), (3.16)

it is straightforward to find (for i 6= j)

(δdLL)ij ∼ g2
GUT

8π2

(

M2
0

m2
q̃

)

(∆q
j − ∆q

i )(V
d
L )ij ,

(δdRR)ij ∼ g2
GUT

8π2

(

M2
0

m2
q̃

)

(∆d
j − ∆d

i )(V
d
R)ij ,
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(δeLL)ij ∼ g2
GUT

8π2

(

M2
0

m2
l̃

)

(∆l
j − ∆l

i)(V
e
L)ij ,

(δeRR)ij ∼ g2
GUT

8π2

(

M2
0

m2
l̃

)

(∆e
j − ∆e

i )(V
e
R)ij ,

(δd,eLR)ij ∼ md,e
i

2M0
(δd,eRR)ij +

md,e
j

2M0
(δd,eLL)ij. (3.17)

Let us now consider the phenomenological constraints on the mass-insertion parame-

ters. For the quark sector, the most stringent constraint comes from the CP violating K-K̄

mixing parameter ǫK . Requiring that the SUSY contribution to ǫK should be less than the

standard model value,2 while assuming the gluino mass mg̃ ∼ mq̃, one finds [37]

√

∣

∣ Im
[

(δdLL)12(δdRR)12
]
∣

∣ . 4 × 10−4
( mq̃

1TeV

)

,
√

∣

∣

∣
Im
[

(δdLR,RL)212

]
∣

∣

∣
. 8 × 10−4

( mq̃

1TeV

)

. (3.18)

For the mass-insertion parameters of (3.17), the second bound is easily satisfied, while the

first bound leads to

M2
0

m2
q̃

(

md

ms

)1/2√
∣

∣(∆q
2 − ∆q

1)(∆
d
2 − ∆d

1) sin ηd
∣

∣ . 7 × 10−2
( mq̃

1TeV

)

, (3.19)

where ηd is a CP violating phase coming from the unitary rotation matrices, and we have

used the relation |(V d
L )12(V

d
R)12| ∼ md/ms. Due to the renormalization group evolution, the

squark mass mq̃ at the weak scale is typically bigger than the modulus mediated gaugino

mass M0 at MGUT. Then, with the help from the small mixing angle |(V d
L )12(V

d
R)12| ∼

md/ms ∼ 1/20 and also an additional minor suppression by M2
0 /m

2
q̃ ∼ 1/3, the above

bound can be satisfied even when |∆φ
1 − ∆φ

2 | ∼ 1, | sin ηd| ∼ 1, and mq̃ ∼ 1TeV.

One might consider the b → sγ process to see if the higher order matter kinetic

functions give rise to a contribution exceeding the current experimental bound. Requiring

that the SUSY contribution to the branching ratio of b → sγ should be less than 10−5,

again with mg̃ ∼ mq̃, one finds [38]

∣

∣

∣
(δdLR)23

∣

∣

∣
. 5 × 10−3

( mq̃

1TeV

)

, (3.20)

which is well satisfied by the mass-insertion parameters estimated in (3.17).

One might consider also the atomic and neutron electric dipole moments (EDMs)

induced by the imaginary part of the diagonal LR mass-insertion parameter [39]. However,

2In view of that the CKM phase explains rather accurately all the observed CP violating phenomena

including those of the B meson system, one might require a stronger condition that the SUSY contribution

to ǫK should be less than about 10% of the standard model prediction. This would result in a factor of few

stronger bound than (3.18), but does not change our conclusion.
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in our case those LR parameters are given by

(δdLR)ii =
(V dT
L ∆AdV d

R)ii〈Hd〉
m2
q̃

≃ g2
GUT

16π2

M2
0

m2
q̃

md
i

M0

[

(∆d
LL)ii + (∆d

RR)ii

]

,

(δeLR)ii =
(V eT
L ∆AeV e

R)ii〈Hd〉
m2
l̃

≃ g2
GUT

16π2

M2
0

m2
l̃

me
i

M0
[(∆e

LL)ii + (∆e
RR)ii] , (3.21)

which are manifestly real. As a result, the atomic and neutron EDMs induced by higher

order matter kinetic function are far below the current experimental limits.

In fact, the most stringent constraints on the modulus mediated SUSY breaking scheme

come from the µ→ eγ process. Requiring that Br(µ → eγ) ≤ 1.2 × 10−11, while assuming

the Wino mass mW̃ ∼ ml̃ and the Higgsino mass µ ∼ 2ml̃, one finds [40, 38]

|(δeLL)12| .
7 × 10−3

tan β

( ml̃

300GeV

)2
,

|(δeRR)12| .
2 × 10−2

tan β

( ml̃

300GeV

)2
,

∣

∣(δeLR,RL)12
∣

∣ . 6 × 10−6
( ml̃

300GeV

)

. (3.22)

For the mass-insertion parameters given by (3.17), the LR bound is easily satisfied. On

the other hand, the LL and RR bounds lead to

M2
0

m2
l̃

∣

∣

∣

(

V e
L

)

12

(

∆l
1 − ∆l

2

)

∣

∣

∣
.

1

tan β

( ml̃

300GeV

)2
,

M2
0

m2
l̃

∣

∣

(

V e
R

)

12

(

∆e
1 − ∆e

2

)∣

∣ .
3

tan β

( ml̃

300GeV

)2
. (3.23)

It is reasonably expected that M0 ∼ ml̃, and also the lepton mixing angles which affect

µ → eγ are related to the µ to e mass ratio as

∣

∣

(

V e
L

)

12

(

V e
R

)

12

∣

∣ ∼ me

mµ
. (3.24)

If tan β ∼ 1, the above LL and RR bounds can be satisfied even when ml̃ ∼ 300 GeV,

|∆l,e
1 − ∆l,e

2 | ∼ 1, and
(

V e
L,R

)

12
have generic values satisfying the above relation. However,

for large tan β, the µ → eγ bound requires a small
∣

∣

(

V e
L

)

12

∣

∣ unless ml̃ ≫ 300 GeV or

|∆l,e
1 − ∆l,e

2 | ≪ 1. For the case with ml̃ ∼ 300 GeV and |∆l,e
1 − ∆l,e

2 | ∼ 1, which is actually

the case of interest for us, the µ → eγ bound can be satisfied with the following small

mixing angle pattern as long as tan β . 30:

∣

∣

(

V e
L

)

12

∣

∣ ∼ θnC ,
∣

∣

(

V e
R

)

12

∣

∣ ∼ θ3−n
C , (n = 1, 2), (3.25)

where θC ∼ 0.2 is the Cabbibo angle. In this case, the large neutrino mixing angles

in the PMNS matrix VPMNS should originate from the unitary matrix V ν
L diagonalizing

the neutrino mass matrix as (3.7), and this might provide a nontrivial condition on the

mechanism to generate the neutrino masses. It is interesting to note that this lepton
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mixing angle pattern allows a sizable SUSY contribution to the muon anomalous magnetic

moment, [41 – 43] which is given by [44]

aSUSY
µ

1 × 10−9
≃
(

tan β

6

)(

300GeV

ml̃

)2( µ

ml̃

)

(3.26)

for a Wino mass mW̃ ∼ ml̃.

To summarize the flavor and CP constraints on moduli-mediated SUSY breaking in

flux compactification, we find that most of the constraints other than those from ǫK and

µ → eγ are well satisfied even for generic form of higher order Kähler potential and sparticle

spectra in the sub-TeV range, if the size of higher order Kähler potential in the messenger

modulus expansion is of O(g2
GUT/8π

2). The constraints from ǫK and µ→ eγ can be satisfied

also again for generic form of higher order Kähler potential and sparticle spectra in the

sub-TeV range, if one makes a plausible assumption on flavor mixing angles motivated

by the observed hierarchical structure of quark and charged lepton masses, for instance

|(V d
L )12(V

d
R)12| ∼ md/ms and |(V e

L)12(V
e
R)12| ∼ me/mµ with |(V e

L)12| . 1/ tan β.

4. Conclusion

Flux compactification can provide a SUSY breaking scheme in which soft terms preserve

flavor and CP at leading order in the perturbative expansion controlled by the vacuum

expectation value of the messenger modulus. In this paper, we have discussed some fea-

tures of flux compactification leading to such SUSY breaking scheme, and examined the

flavor and CP constraints on the higher order Kähler potential. It is found that all phe-

nomenological constraints can be satisfied even for generic form of higher order Kähler

potential and sparticle spectra in the sub-TeV range, under plausible assumptions on the

size of higher order correction and flavor mixing angles. This implies that various SUSY

breaking schemes involving such modulus mediation, e.g. mirage mediation and modulus-

dominated mediation realized in flux compactification, can be free from the SUSY flavor

and CP problems, while giving gaugino and sfermion masses in the sub-TeV range which

can be probed by the LHC.
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A. Matter modular weights

In some class of compactification, the modular weights can be determined by a simple

scaling argument combined with the non-linear PQ symmetry of the axion component [45,
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24, 25]. In our notation, the modular weight nI is defined by the matter kinetic function as

YI ∝ (T + T ∗)nI (A.1)

at leading order in the messenger modulus expansion. Note that

YI = e−K0/3ZI , (A.2)

where K0 is the moduli Kähler potential and ZI is the matter Kähler metric, i.e

K = K0(T + T ∗) + ZI(T + T ∗)QI∗QI . (A.3)

At leading order, e−K0 and ZI have a simple power-dependence on Re(T ):

e−K0 ∝ (T + T ∗)n0 , ZI ∝ (T + T ∗)kI , (A.4)

and then3

nI =
1

3
n0 + kI . (A.5)

Typically, the messenger modulus behaves (in the string unit with α′ = 1) as

Re(T ) ∝ Rl/gnst, (A.6)

where gst is the string coupling, R is the compactification radius, and l and n are (model-

dependent) non-negative integers. The string coupling and compactification radius define

another modulus ∝ Rl
′

/gn
′

st which might be fixed by flux. Here, we consider two simple

cases: the case (A) with n′ = 0, in which R is stabilized by flux, while gst remains unfixed,

and another case (B) with l′ = 0, in which gst is stabilized by flux, while R remains

unfixed. In case (A), the messenger modulus expansion can be identified as a string coupling

expansion with gnst ∝ 1/Re(T ). On the other hand, in case (B), the messenger modulus

expansion can be identified as a radius expansion with 1/Rl ∝ 1/Re(T ).

Case (A). Let us first examine the case that the messenger modulus expansion corresponds to

a string coupling expansion with

Re(T ) ∝ 1/gnst, (A.7)

where n is a positive integer. For this case, we assume that the kinetic terms of

4D gauge and matter fields and also the trilinear Yukawa couplings are generated

at the same (leading) order in gst,and thus the gst-dependence of the 4D action is

schematically given by

L =
1

gNst

[

−1

4
F aµνF

aµν + ∂µφ
I∗∂µφI + iψ̄Iσµ∂µψ

I +
(

λIJKφ
IψJψK + h.c.

)

]

,(A.8)

3Often −kI is also called the matter modular weight.
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where (φI , ψI) denote the chiral matter multiplets, N is a positive integer, and λIJK
are independent of gst. We then have

gGUT ∝ g
N/2
st , yIJK ∝ g

N/2
st , (A.9)

where gGUT and yIJK are the 4D gauge coupling and the canonically normalized

Yukawa couplings, respectively.

In N = 1 superspace, this 4D action can be written as

∫

d4θ YIQ
IQI∗ +

[
∫

d2θ

(

1

4
faW

aW a +
1

6
λIJKQ

IQJQK
)

+ h.c.

]

, (A.10)

where QI = φI + θψI + θ2F I . The non-linear PQ symmetry U(1)T of the axion com-

ponent Im(T ) implies that the holomorphic Yukawa couplings λIJK are independent

of T , while the gauge kinetic functions fa are either linear in T or independent of T .

Combining those constraints from U(1)T with

1

g2
GUT

= Re(fa), yIJK =
λIJK√
YIYJYK

, (A.11)

one easily finds N = n, and

fa ∝ T, YI ∝ (T + T ∗)nI (A.12)

with

nI + nJ + nK = 1 (A.13)

at leading order in the messenger modulus expansion. On the other hand, the uni-

versal gst-dependence of matter kinetic terms and Yukawa couplings suggests that

the T -dependence of YI is universal also, so

nI = 1/3. (A.14)

To summarize, if the messenger modulus expansion corresponds to a string cou-

pling expansion, and the gauge and matter kinetic terms and the trilinear Yukawa

couplings are generated at the same (leading) order in this expansion, the matter

modular weights have a universal value 1/3. One such example is the case that the

messenger modulus corresponds to the heterotic dilaton, for which n0 = 1 and kI = 0

in (A.4), and thus nI = 1/3.

Quite often, string compactification involves an anomalous U(1)A gauge symme-

try [46] under which T transforms as

U(1)A : T → T − i

2
α(x)δGS, (A.15)

where α(x) is the U(1)A transformation function and δGS is the Green-Schwarz coeffi-

cient of O(1/8π2). In the presence of such anomalous U(1)A, the messenger modulus
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should be redefined as it mixes with the U(1)A vector superfield V . This results in

a shift of modular weight after the massive U(1)A vector multiplet is integrated out,

as will be discussed below.

Models with anomalous U(1)A give a modulus-dependent Fayet-Iliopoulos (FI) D-

term

ξFI =
1

2
δGS

∂K0

∂T
. (A.16)

Then, to satisfy the D-flat condition, one needs a U(1)A-charged MSSM singlet X

which has a large vacuum value 〈X〉 = O(ξFI) to cancel this FI term.

Let us consider the 4D action including such field X:

L =

∫

d4θ
[

Ω0(T + T ∗ − δGSV ) + YX(T + T ∗ − δGSV )X∗e−2VX

+YI(T + T ∗ − δGSV )QI∗e2qIVQI
]

, (A.17)

where Ω0 ≡ −3e−K0/3 and the U(1)A charge of X is normalized as qX = −1. For

δGS = O(1/8π2), one can show [48] that the mass eigenstate vector superfield Ṽ is

given by

Ṽ ≃ V − ln |X| (A.18)

which has a superheavy mass M2
Ṽ
∼ δGSM

2
Pl. It is straightforward to integrate out Ṽ

to obtain the effective action of the light modulus T and the visible matter fields Qi:

Leff =

∫

d4θ
[

Ω0(T + T ∗) + Y eff
I (T + T ∗)QI∗QI + · · ·

]

, (A.19)

where the ellipsis stands for the corrections suppressed by δGS, and the effective

matter kinetic function is given by (after an appropriate redefinition of QI) [47, 48]

Y eff
I =

(

YX
∂TΩ0

)qI

YI . (A.20)

After Ṽ is integrated out, the effective modular weight is defined as

Y eff
I ∝ (T + T ∗)n

eff
I (A.21)

at leading order in the messenger modulus expansion. In case when T corresponds

to the heterotic dilaton, we have Ω0, YX , YI ∝ (T + T ∗)1/3. The resulting effective

modular weight is give by

neff
I =

1

3
+ qI , (A.22)

which would be flavor universal if the U(1)A charges are flavor universal.
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Case (B). Let us consider another case that the messenger modulus expansion corresponds to

a radius expansion with

Re(T ) ∝ Rl (l > 0). (A.23)

In this case, we can have more variety of possibilities.

Let us suppose that the gauge field Aaµ propagates over lG-dimensional internal space

(lG > 0), the matter field QI propagates over lI -dimensional internal space, and the

Yukawa coupling yIJK originates from a wavefunction integral over lIJK-dimensional

internal space. Then, schematically, the 4D action takes the form:

L=−1

4
RlGF aµνF

aµν+RlI
(

∂µφ
I∗∂µφI+iψ̄Iσµ∂µψ

I
)

+
(

RlIJKλIJKφ
IψJψK+h.c.

)

,

(A.24)

where

0 ≤ lI ≤ lG, 0 ≤ lIJK ≤ min(lI , lJ , lK). (A.25)

The resulting gauge and canonically normalized Yukawa couplings behave as

1

g2
GUT

= Re(fa) ∝ RlG ,

yIJK =
λIJK√
YIYJYK

∝ RlIJK−
lI+lJ+lK

2 . (A.26)

Again, with the non-linear PQ symmetry U(1)T which requires fa is either linear in T

or independent of T , and λIJK are independent of T , these relations imply lG = l, and

YI ∝ (T + T ∗)nI , (A.27)

where nI are constrained as

nI + nJ + nK =
lI + lJ + lK − 2lIJK

lG
. (A.28)

For the MSSM matter fields, it is quite plausible that lI and lIJK are universal. Then,

the resulting modular weights are universal and given by

nI =
lI
lG

− 2

3

lIJK
lG

. (A.29)

One interesting point is that the modular weights have a universal value 1/3 as in

the case (A) if all gauge and matter fields propagate over the same internal space and

also the Yukawa couplings are given by wavefunction integrals over the same internal

space, i.e. lG = lI = lIJK . In models with an anomalous U(1)A, this modular weight

is shifted by the U(1)A charge as determined by (A.20).
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